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Abstract

In recent years, there has been intense interest in understanding various physical phenomena in random heterogeneous
media. Any accurate description/simulation of a process in such media has to satisfactorily account for the twin issues of
randomness as well as the multilength scale variations in the material properties. An accurate model of the material prop-
erty variation in the system is an important prerequisite towards complete characterization of the system response. We
propose a general methodology to construct a data-driven, reduced-order model to describe property variations in realistic
heterogeneous media. This reduced-order model then serves as the input to the stochastic partial differential equation
describing thermal diffusion through random heterogeneous media. A decoupled scheme is used to tackle the problems
of stochasticity and multilength scale variations in properties. A sparse-grid collocation strategy is utilized to reduce
the solution of the stochastic partial differential equation to a set of deterministic problems. A variational multiscale
method with explicit subgrid modeling is used to solve these deterministic problems. An illustrative example using exper-
imental data is provided to showcase the effectiveness of the proposed methodology.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Thermal transport in random heterogeneous media is an ubiquitous process occurring in various scales
ranging from the large scale (e.g. geothermal energy systems, geological heating of the earth’s crust) to
smaller scales (e.g. heat transfer through composites, blends, polycrystals, inter-dentritic diffusion and heat
transfer through fluidized beds). In the past decade, there has been increasing interest in reliably modeling
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and predicting the thermal behavior of such media. In this context, any realistic simulation and prediction
methodology must satisfactorily deal with some important issues related with the property variation in ran-
dom heterogeneous media:

� Multiple length scales: Properties like permeability and thermal conductivity exhibit variations across multi-
ple length scales. This is because of the small scale variations in the microstructure of the media (change in
phases, micro-porosity, holes and exclusions, cracks, etc.). These small scale variations in properties cannot
be neglected as they usually result in considerable changes in the thermal behavior at the larger scales [1].
� Statistical nature of properties: It is not possible to experimentally determine the complete structure of the

media at the finest scale. In most cases, only a few statistical properties of the structure are experimentally
determined. These properties include the volume fraction, two-point correlations and three-point correla-
tions among others. Every realization of the microstructure in the media will satisfy these correlations. This
necessitates viewing the microstructure as a random field that satisfies certain statistical properties/correla-
tions. As the thermophysical properties of the media implicitly depend on the microstructure, these prop-
erties must also be viewed as random fields.
� Uncertainties in the system and properties: Most physical models require some input constitutive relations

and/or material properties. These inputs are usually available or derived from experimental data. The pres-
ence of uncertainties/perturbations in experimental studies implies that these input parameters have some
inherent uncertainties. To accurately predict the performance of the system, it then becomes essential for
one to include the effects of these input uncertainties into the model system and understand how they prop-
agate and alter the final solution.

A brute force approach to assess the effects of the small scale variations would be to perform a fully-
resolved transient computation. This computation requires spatial and temporal discretizations that would
resolve the smallest length scales in the material data and the time scales in the solution. This methodology
quickly becomes computationally intractable even for deterministic problems of moderate size. An alternate
computational approach is to have a coarse-scale description that includes the small scale effects in an aver-
aged form. Computational techniques have been developed that ‘solve for a coarse-scale solution by defining
an appropriate coarse-scale problem that captures the effect of the fine-scales’ [2]. This is the central concept to
most upscaling formulations. The more popular techniques developed for upscaling in the deterministic con-
text fall under the category of multiscale methods viz. the variational multiscale (VMS) method (also known as
operator upscaling) [3], the heterogenous multiscale method [4,5] and the multiscale finite element method [6].
These methods typically introduce multiscale basis functions at the coarse-scale. This essentially involves split-
ting the variational formulation for the governing equations into a coarse and a fine-scale part. The fine-scale
part is then solved approximately to obtain the fine-scale solution model, that is substituted in the coarse-scale
part of the variational formulation to obtain an upscaled problem. Further related techniques include the gen-
eralized finite element method [7] and residual-free bubbles [8].

Almost all of the above approaches have been exclusively limited to solving deterministic problems. The
presence of uncertainties, either due to input uncertainties or formulating the microstructure as a random
field, can be modeled in the system through reformulation of the governing equations as stochastic partial dif-
ferential equations (SPDEs). A recent approach to model uncertainty is based on the spectral stochastic finite
element method (SSFEM) [9]. In this method, the random field is discretized directly, i.e. uncertainty is treated
as an additional dimension along with space and time and a field variable is expanded along the uncertain
dimension using suitable expansions. The basic idea is to project the dependent variables of the model onto
a stochastic space spanned by a set of complete orthogonal polynomials. This method has been applied with
great success to investigate numerous physical phenomena [10–13]. Error bounds and convergence studies [14–
16] have shown that these methods exhibit fast convergence rates with increasing orders of expansions.
Though the SSFEM method has been used successfully in a variety of scenarios, it has a few drawbacks like
the ‘curse-of-dimensionality’ and the intense programming effort required to build the framework (see [17–19]
for a discussion). The SSFEM method cannot be easily applied to problems involving high stochastic dimen-
sion. It also cannot be easily extended to problems having steep gradients and discontinuities (there has been
some recent progress in this regard, see [20]).
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To solve problems in high-dimensional stochastic spaces and to allow non-smooth variations of the solu-
tion in the random space, there have been recent efforts to couple the fast convergence of the Galerkin meth-
ods with the decoupled nature of Monte Carlo sampling [21,22]. Xiu and Hesthaven [18], Xiu [19] and Nobile
et al. [23] recently used the Smolyak algorithm to build sparse grid interpolants in high-dimensional space.
Using this method, interpolation schemes (for the solution) can be constructed with orders of magnitude
reduction in the number of sampled points to give the same level of approximation (up to a logarithmic factor)
as interpolation on a uniform grid. Ganapathysubramanian and Zabaras [17] extended this methodology to
adaptively sample more important dimensions, resulting in further computational gains. The sparse grid col-
location and cubature schemes have been well studied and utilized in different fields [24–26].

Though the fields of multiscale modeling as well as stochastic modeling are relatively mature, there has not
been much work on a combined stochastic, multiscale framework of analysis. To the best knowledge of the
authors, the only previous work in this field is by Velamur Asokan and Zabaras [27], where a stochastic var-
iational multiscale framework based on ideas from the generalized polynomial chaos expansion (GPCE) and
VMS was developed. In [27], only the uncertainty in properties was considered with a fixed topology of the
underlying two-phase medium. In a related work, Xiu and Tartakovsky [28] assumed that the random fluctu-
ations in properties could be additively decomposed into a mean part and a fluctuating part. They used a cou-
pled GPCE and random domain decomposition (RDD) methodology to solve for the stochastic variable. This
methodology can be seen as a precursor to the multiscale methods. In the present work, an extension of the
deterministic variational multiscale method (VMS) to include uncertainties that arise from random topology
of the underlying medium is proposed. A sparse grid collocation strategy is utilized to construct the stochastic
solution. The proposed methodology illustrates a general scheme to easily solve the twin problems of multi-
length scale variations in properties and the corresponding uncertainties associated with them.

In most analyses of diffusion through random heterogeneous media, the properties (property statistics) are
usually assumed to be analytically known functions. Physically meaningful/useful solutions can be realized
only if property statistics are experimentally obtained and used. Usually, experimental data regarding statistics
and correlations of the microstructure (and properties) are known for the random heterogeneous media. We
propose a methodology to utilize this experimentally available data to generate the stochastic inputs required
in the stochastic variational multiscale (SVMS) framework. This is conceptually similar to the case of studies
of flow in heterogeneous porous media (geological studies) where various techniques are used to reconstruct
parameter fields from data. In the first step, a class of 3D microstructures, satisfying the experimental corre-
lations, is reconstructed. A model reduction scheme (principle component analysis (PCA), Karhunun–Loève
expansion (KLE)) is used to convert the infinite-dimensional space describing the class of microstructures to a
finite-dimensional approximation of the space. The finite-dimensional model represents the class of allowable
microstructures that satisfy the experimental correlations. This model is utilized as the stochastic input in the
stochastic variational multiscale (SVMS) framework.

The proposed methodology seamlessly ties together three distinct aspects of realistic modelling of complex
systems, namely (i) a general methodology for generating data-driven models of material and topological vari-
ations for use as stochastic inputs, (ii) a general decoupled methodology for accessing the effect of these input
uncertainties on the complex system, and (iii) a multiscale methodology for upscaling the effects of fine scale
features of the system. We would like to emphasize that there have been significant developments in each of
the above three aspects of analysis individually. There have been advances in extracting stochastic models
from experimental data [29]. Techniques like the random domain decomposition method [30–32], the maxi-
mum likelihood principle [33] and the maximum entropy principle [34,35] have been used to successfully
reconstruct material models for use in stochastic analysis. There has been rapid developments in the analysis
of multiple scales of property variations and towards extraction of useful (from an engineering context)
coarse/large scale behavior [2,3,6]. Nevertheless, to the best knowledge of the authors, this is the first time that
a robust methodology has been developed that seamlessly merges all these various aspects of analyses: from
developing a data-driven model for generating inputs to a stochastic (multiscale) framework with an ultimate
goal obtaining the probability distribution of the physical fields (e.g. temperature in a diffusion process) that
arise from the randomness of the topology and properties of the underlying medium.

The layout of this article is as follows: in the next section, we introduce the problem of interest, with a dis-
cussion of the uncertainty in topology as well as the multilength scale variations in the topology. Section 3
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describes the data-driven approach to generate the class of allowable microstructures given limited statistical
microstructural information. A discussion of the techniques used to reduce this class of reconstructed micro-
structures into a finite-dimensional model is provided in Section 4. Section 5 describes the sparse-grid collo-
cation methodology, while Section 6 describes the basics of the variational multiscale model used. Section 7
consists of an illustrative numerical example, wherein statistics of temperature variation in three-dimensions
are constructed using an experimentally obtained two-dimensional microstructural image of a two-phase
material. We conclude in Section 8 with some comments and avenues of future work.

2. Problem definition

The focus of this work is to investigate diffusion in heterogeneous media (henceforth referred to as the
‘microstructure’). Fig. 1 shows three different kinds of such microstructures. Particular instances of diffusion
through these microstructures could be heat flow through a pearlite structure, diffusion of sulphur through
two-phase brass or the diffusion of contaminants through a soil specimen. The emphasis of this paper is on
analyzing diffusion through such random microstructures.

Why is the microstructure random? The microstructure (as shown in Fig. 1) is typically obtained by exper-
imentally visualizing a specific point (e.g. samples obtained from the surface of an extruded polycrystalline
material or from a cast iron surface) in the specimen. If the microstructure were to be visualized at exactly
the same point in another specimen (made from the same material and via the same process), one would expect
to get a completely different image of the microstructure. It is only practical to experimentally take a finite
number of samples of the microstructure, and usually all these microstructural images are different. Thus,
if one were to consider any such specimen, the microstructure is inherently random (i.e. it is unknown) in that
its topology varies from specimen to specimen. Even though the microstructural samples would be different,
the topology of the microstructure satisfy some statistical properties as a result of the physical process path
(e.g. extrusion, sintering) used to obtain the specimen. For instance, the volume fraction of one of the com-
ponents in a two-phase microstructure is a first-order statistical property. All the microstructures should have
the same volume fraction of the corresponding components, since they are obtained from the same material.
Similarly, higher-order statistical properties involving the topology of the microstructures can be defined.
Consequently, the microstructural topology can be considered as a random field (satisfying some statistical
properties) and the microstructure in any arbitrary specimen is then a realization of this field. The thermal
properties of the material obviously depend on the topology of the microstructure. We assume that the ther-
mal properties of the material are uniquely defined by its microstructure (e.g. each point in a realization of a
two-phase (a, b phases) medium is assumed to be uniquely occupied by one of the two phases and that each
phase has given properties).

Remark 1. We will henceforth limit ourselves to a discussion of the microstructural topology. This will be
used interchangeably to also mean the thermal property variation (i.e. the diffusivity, a ¼ k

qCP
) in the

microstructure. When we state that the microstructure is random, we also mean that a is random.

The aim of the discussion above is to emphasize the fact that the microstructure and its thermal properties
are not known explicitly since the underlying medium is only a realization of a random field. Only certain sta-
tistical moments of the microstructure and its properties are known. Let us denote these properties by
ðP 1; . . . ; P nÞ. Any random microstructure that satisfies these statistical properties has a finite probability of
Fig. 1. Pictographs of three different heterogeneous microstructures: On the left: pearlite; In the middle: brass; On the right: soil.
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being the microstructure. This statement can be stated rigourously as follows: Let X be the space of all micro-
structures that satisfy the statistical properties ðP 1; . . . ; P nÞ. This is our event space. Every point in this space is
equiprobable. Consequently, we can define a r-algebra F and a corresponding probability measure
P : F! ½0; 1� to construct a complete probability space ðX;F;PÞ of allowable microstructures. The thermal
properties of the random heterogeneous medium is represented as
aðxÞ ¼ aðx;xÞ; x 2 D; x 2 X; ð1Þ

where D � Rd is the d-dimensional bounded domain that is associated with this medium. We re-iterate that the
property randomness is assumed to be affiliated only with the topological variability of the microstructure.
The governing equation for thermal diffusion in this medium is
ouðx; t;xÞ
ot

¼ r � ½aðx;xÞruðx; t;xÞ� þ f ðx; t;xÞ; x 2 D; t 2 ½0; T f �; x 2 X; ð2Þ
where u is the temperature and f is the thermal source/sink.
The variable u depends on the random field x, which belongs to an infinite-dimensional probability space.

The solution methodology is to first reduce the complexity of the problem by reducing the probability space
into a finite-dimensional space. In most analysis, the random field aðx;xÞ is assumed to be represented/
described by a finite length random vector ½n1; . . . ; nN � : X! RN . In other cases, the random field has a spatial
correlation or variation and the ‘finite-dimensional noise assumption’ [15] ensures that the random field can be
decomposed into a finite set of random variables. In the present case, the random field satisfies certain statis-
tical properties P 1; . . . ; P n. We utilize model reduction techniques like the Karhunen–Loève transform and
principle component analysis to decompose the random field into a finite set of uncorrelated random variables
(satisfying some bounds, see Section 4). Upon decomposition and characterization of the random inputs into
N random variables, ni(x), i ¼ 1; . . . ;N , the solution to the stochastic partial differential equation Eq. (2) can
be written as
uðx; t;xÞ ¼ uðx; t; nÞ; n ¼ ðn1; . . . ; nN Þ; ð3Þ

where n is the N-tuple of the random variables. The domain of definition of n is denoted by C. The diffusion
equation Eq. (2) can now be written as
ouðx; t; nÞ
ot

¼ r � ½aðx; nÞruðx; t; nÞ� þ f ðx; t; nÞ; x 2 D; t 2 ½0; T f �; n 2 C: ð4Þ
For the sake of brevity, we will denote the above system as Bðu : x; t; nÞ ¼ 0.

Remark 2. We limit ourselves to a discussion of two-phase random microstructures. The proposed analytical
developments can be extended to other types of microstructures in a straightforward manner.

Remark 3. Let L denote the length scales associated with the domain D. As discussed earlier the material mak-
ing up this domain is highly heterogeneous. Its topology usually varies rapidly at a scale � much smaller than
the characteristic macro-length scale L (�� L). In the present work, we also look at computationally efficient
methods to resolve the effect of these small scale variations in the topology.

The next two sections discuss the methodology to convert the given experimentally determined statistical
properties ðP 1; . . . ; P nÞ into a reduced-order finite-dimensional model for a(x,x). Then, computational tech-
niques to reduce the effort required to resolve the effect of these small scale variations in the topology are
formulated.

3. Data-driven reconstruction of the microstructure class

In order to construct a reduced-order finite-dimensional model for the stochastic microstructure in the
material, it is necessary to first construct a database/library of possible microstructures. In the best case sce-
nario, such a database already exists via experimental imaging of the microstructure across many different
specimens. These images can then be used as instances of the microstructure. But such imaging procedures
are both expensive and time-consuming to perform. Nevertheless, it has to be noted that such a procedure
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would provide the most physically realistic database of microstructures. In most cases, the microstructure is
imaged in a few specimens and certain statistical correlations are extracted. These experimentally determined
correlations can be easily computed using simple image processing procedures. A brief description of the var-
ious experimentally useful correlations is provided next. This will also be useful in motivating the model reduc-
tion strategies developed in the next section.

3.1. Statistical correlation functions

Consider the digitized experimental image representing the random microstructure sampled at a point in
the specimen. The two-phase random media consists of two disjoint regions of space: region V1 consists of
phase 1, while region V2 consists of phase 2. The characteristic function or the indicator function for a par-
ticular phase, i is defined as
I ðiÞðxÞ ¼ 1; x 2V1;

¼ 0; x 2V2:
ð5Þ
Volume fraction: The simplest statistical description of a random media is the volume fraction. The volume
fraction can be interpreted in statistical terms as the probability of a point belonging to a phase [36,37]. This is
the one-point correlation function defined as
/1 ¼ hI ð1ÞðxÞi ¼
1

V

Z
V

I ð1ÞðxÞdx: ð6Þ
Given a digitized image of the two-phase material, the volume fraction is just the number of phase 1 pixels by

the total number of pixels in the image /1 ¼ 1
V

R
V I ð1ÞðxÞdx ¼ 1

Npixels

PNpixels

i¼1 I ð1ÞðiÞ
� �

.

2-point correlation: A higher-order descriptor of the random media is the 2-point correlation. The 2-point
correlation is defined as the probability that two randomly chosen points a distance r apart in the media,

belong to the same phase i: Sð1Þ2 ðrÞ ¼ hI ð1ÞðxÞI ð1Þðxþ remÞi, where em is a unit vector in an arbitrary direction

m. In the integral form, Sð1Þ2 ðrÞ ¼ 1
H

R
H

1
V

R
V I ð1ÞðxÞI ð1Þðxþ remÞdxdm, where em is a unit vector in the m direction,

H is the range of variability of m (in two dimensions 1
H

R
H A dm is 1

2p

R 2p
0

Adh, while in three dimensions it is
1

4p

R 2p
0

R p
0

A sinð/Þdhd/).

The discussion above enumerates few of the more important morphological characterizations of a random
media. There are many more possible characterizations that provide other useful information about the ran-
dom microstructures. These include the pore size distribution functions, surface correlation functions, cluster
functions and nearest-neighbor functions. These characterizations can further be extended to multiphase, mul-
ticomponent systems. The interested reader is refereed to the excellent review on the subject by Torquato
[36,38] and the references therein.

3.2. Reconstruction techniques

Given some experimentally determined statistical correlation functions of the random media, the goal is to
reconstruct a large set of microstructures satisfying these correlation functions. This is the first step towards
building a reduced-order model to the microstructural space. There are basically two ways of reconstructing
microstructures: Statistics driven reconstruction and process driven reconstruction.

3.2.1. Statistics driven reconstruction

The reconstruction of random microstructures was first performed to obtain property bounds on elastic
properties of materials [39]. There are various techniques for reconstructing random media from the given cor-
relation functions:

� Gaussian random fields and other models: The microstructure is considered to be a level cut of a Gaussian
random field (GRF). The statistical correlations are enforced during the construction of the GRF. This
method has been shown to be very useful in describing porous materials, blends, polymers and ceramics.
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Up to third-order correlation statistics have been used to reconstruct the random media [40–42]. Recent
developments include multi-dimensional nonlinear transformations of Gaussian random fields to construct
two-phase random media [43].
� Simulated annealing and stochastic optimization: These techniques construct an energy functional describing

the microstructure. The energy of the microstructure represents its deviation from the required correlations
functions. Various minimization techniques based on simulated annealing and stochastic optimization
methods are used to minimize the energy leading to a microstructure that satisfies the correlation functions
[39,44].
� Maximum entropy methods: A novel method of reconstructing the microstructure given limited statistical

correlation functions is via posing the reconstruction problem as a maximum entropy problem
[34,35,45]. Microstructures are assumed to be samples from a governing PDF and this PDF is computed
using maximum entropy theory.

3.2.2. Process driven reconstruction

As stated at the beginning of the section, the best case scenario for model reduction would be a pre-existing
database of microstructures via experimental imaging of the microstructure across many specimens. Instead of
experimentally determining the microstructure, an alternative method to build the data set of possible micro-
structures is to directly simulate the thermo-mechanical process that results in these microstructures. This cal-
culation of the microstructure from first principles becomes a computationally expensive problem.
Nevertheless, these simulations can be done in small domains to make the process computationally feasible.
Various examples of constructing a microstructure class via numerically simulating the evolution of the micro-
structure include Monte Carlo methods [46], phase field methods [35], as well as direct numerical simulation of
microstructure evolution [47,48].

Remark 4. Any microstructure reconstruction technique can be utilized to construct realizations of the
microstructure.
4. Model reduction

Following the schemes detailed in the previous section, it is straightforward to generate a large dataset of
possible microstructures. This data set represents a set of unique points in the space of allowable microstruc-
tures. There are several dimension reduction schemes that are available to reduce this microstructural space
into a finite-dimensional approximation. Principle component analysis is a powerful technique to obtain
low-dimensional representation of a large amount of data. Using a set of large-dimensional data called the
‘snapshots’, the method decomposes the data into an optimal orthonormal basis. Few basis vectors selected
in the order of importance can be used for the representation of the high-dimensional datasets. This method
is well suited to the representation of microstructures.

Let the dataset contain M microstructures. Let us denote each of these images by Ii, i = 1, . . .,M. Each
image, Ii consists of n · n · n pixels. The microstructure images are converted into M vectors (X(i)) each of

length n3. The average image vector is computed as l ¼ 1
M

PM
i¼1X ðiÞ. The average microstructure (l) is then sub-

tracted from all the image vectors as X(i) X(i) � l for i = 1, . . .,M. The eigenvectors U(k) of the n3 · n3

covariance matrix C ¼ 1
M

PM
i¼1X ðiÞX ðiÞ satisfying the equation
CU ðkÞ ¼ kkU ðkÞ; k ¼ 1; . . . ; n3; ð7Þ
along with the eigenvalues kk are computed. This set of eigen-images and eigenvalues form the best basis to
represent the microstructures. The computation of these n3 basis becomes a computationally intensive process
because of the very large dimensionality (n3) of the correlation matrix. The ‘method of snapshots’ provides a
computationally more efficient way to compute these basis images (refer [49] for a discussion of the method of
snapshots and see [50] for details on efficiently computing the basis images).
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The first N eigen-images (usually N�M) representing most of the energy spectrum of the decomposition is
chosen. Any random microstructure (I) belonging to the space of allowable microstructures X can then be rep-
resented as a unique linear combination of the N eigen-images (see Fig. 2):
I ¼ lþ
XN

i¼1

aiU ðiÞ; I 2 X; ða1; . . . ; aN Þ 2 RN : ð8Þ
Let us denote the transformation of any microstructure (its digitized image) I 2 X into the set of N real coef-
ficients a1; . . . ; aN by F. The function F : X! RN represents the reduced-order model of the infinite-dimen-
sional space X in N dimensional space.

Remark 5. It is important to note that F is injective but not surjective. That is, every microstructure Ik 2 X
has a unique mapping ðaðkÞ1 ; . . . ; aðkÞN Þ 2 RN . On the other hand, every point ðaðmÞ1 ; . . . ; aðmÞN Þ 2 RN results in a
microstructure Im that need not belong to X.

For the mapping to be useful in the solution of the stochastic partial differential equation Eq. (2) describing
diffusion through random heterogeneous media, F has to be made bijective. The co-domain of F has to be
contracted to H � RN such that F : X!H is bijective. That is, we have to construct the space of allowable
N-tuples ðaðmÞ1 ; . . . ; aðmÞN Þ 2H � RN whose images Im belong to X. This is shown schematically in Fig. 3.

4.1. Constructing the subspace H

An alternate, equivalent definition of the space H � RN , that will clarify the contraction procedure, is given
as

Find the largest proper subset H � RN such that, for any point ða1; . . . ; aN Þ 2H, the image I ¼ lþPN
i¼1aiU ðiÞ belongs to the space X.
Every image I 2 X satisfies certain statistical properties P 1; . . . ; P m. These statistical properties can now be

used to provide bounds on the values that the N-tuple ða1; . . . ; aN Þ can take. We systematically develop these
constraints below.
F

I1
Ij

Ik
Ip

:

:

a1

a1

a1 aj

ak

a1

a1

ap

:

:

Ω
Ω

RN

F
’

I1
Ij

Ik
Ip

:

:

a1 aj

ak

ap

:

:

H

Fig. 3. To make the mapping F bijective, its range has to be contracted from RN to H.
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4.1.1. Bounds on the pixel values

Each pixel in the image can only take values in a bounded interval, usually [0,1]. Denote the range of pos-
sible values by ½pl; ph�. The bounds on the N-tuple can be written as
pl 6 lðbÞ þ
XN

i¼1

aiU ðiÞðbÞ 6 ph; b ¼ 1; . . . ; n3; ð9Þ
where b ranges over all the n3 pixels in the image. This results in a set of 2n3 linear (inequality) constraints on
the N-tuple.

4.1.2. Constraints through first-order statistics: volume fraction

The volume fraction of the phase 1 of any reconstructed microstructure must be equal to /1. This results in
a linear equality constraint on the N-tuple given by
/1 ¼ hIi ¼ lþ
XN

i¼1

aiU ðiÞ
* +

¼ hli þ
XN

i¼1

aiU ðiÞ
* +

¼ hli þ
XN

i¼1

aihU ðiÞi;
from which we can write the following:
/1 ¼ b0 þ
XN

i¼1

aibi; ð10Þ
where bi = ÆU(i)æ is the mean value of the individual eigen-images and b0 is the mean value of the mean image.
For ease of notation, we set U0 = l and a0 = 1.

4.1.3. Constraints through second-order statistics: 2-point correlation
Enforcing the condition that the 2-point correlation of the reconstructed image must satisfy the given func-

tion S(r) results in a set of quadratic equality constraints. This can be derived as follows:
S2ðrÞ ¼ hIðxÞIðxþ rÞi ¼
XN

i¼0

aiU ðiÞðxÞ
" # XN

j¼0

ajU ðjÞðxþ rÞ
" #* +

¼
XN

i¼0

XN

j¼0

½aiU ðiÞðxÞ�½ajU ðjÞðxþ rÞ�
* +

¼
XN

i¼0

XN

j¼0

aiajhU ðiÞðxÞU ðjÞðxþ rÞi;¼
XN

i¼0

XN

j¼0

aiaj
1

H

Z
H

1

V

Z
V

U ðiÞðxÞU ðjÞðxþ remÞdxdm;
from which we can write the following:
S2ðrÞ ¼
XN

i¼0

XN

j¼0

aiajCijðrÞ; ð11Þ
where CijðrÞ ¼ 1
H

R
H

1
V

R
V U ðiÞðxÞU ðjÞðxþ remÞdx dm.

The total number of these constraints is equal to the range of r in the equation above. Usually, for discret-
ized images, r takes a small number of integer values r ¼ 1; . . . ; q. Enforcing the two-point correlation function
results in a set of q quadratic equality constraints.

4.1.4. Computational complexity of enforcing constraints

The subspace H is constructed by solving a constrained minimization problem with the given constraints.
It is relatively simple to solve for H when only the pixel constraints Eq. (9) and the first-order statistic of vol-
ume fraction Eq. (10) are enforced. These result in a set of linear inequalities and one linear equality con-
straint. This is a simple problem in linear programming, where the subspace is a convex hull [51]. Let
a ¼ ða1; . . . ; aNÞ denote any point in H:

Find the region H � RN
that satisfies

PN
i¼0

aibi ¼ /1;

subject to the constraints pl 6
PN
i¼0

aiU ðiÞðbÞ 6 ph; b ¼ 1; . . . ; n3:
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Enforcing second-order statistics (along with the first-order statistic and the pixel constraints) becomes a
problem in quadratic programming [51].

Find the region H � RN
that minimizes GðaÞ ¼ ja0CðrÞa� SðrÞj

subject to the constraints
PN
i¼0

aibi ¼ /1, and

pl 6
PN
i¼0

aiU ðiÞðbÞ 6 ph; b ¼ 1; . . . ; n3;

where C(r) is the matrix notation of Cij(r). There are various procedures, like the active set method and the
preconditioned conjugate gradient method that can be used to find the subspace H [51].

Remark 6. Once C(r) has been computed, evaluation of the quadratic function GðaÞ is just a set of matrix-
vector multiplies.

Higher-order statistics can be similarly enforced. A systematic way to find the subspace H is to sequentially
apply the constraints of the statistical properties, starting form the first-order constraints. This is schematically
shown next.

4.1.5. Sequential contraction of the subspace: a numerical illustration

In this sub-section, we illustrate the methodology formulated above to find the subspace H. For the sake of
simplicity and ease of visualization, we assume that the number of eigen-images is considered to be 3. H is a
subspace of R3.

First H is set equal to R3. The equality constraint of the volume fraction is applied next. This can be used
to represent one of the variables (say a3) in terms of the other two variables (a1,a2). This constraint ensures
that the allowable set of points lie on the plane defined by a3 ¼ /�a1b1�a2b2

b3
. This plane is visualized in

Fig. 4a. Next, the pixel bounds on the mapped image are enforced. This is a set of convex linear inequality
constraints. This convex set of constraint inequalities is converted into the set of vertices at the intersections
of those inequalities. This is called the ‘vertex enumeration’ problem in linear programming. A primal-dual
polytope method is employed in MatLab to construct the set of vertices [52]. The resulting convex hull is visu-
alized in Fig. 4b. A second-order statistic in the form of the two-point correlation is chosen. For simplicity, we
only enforce the value of L(2). This constraint results in a quadratic programming problem. The resulting sur-
face is plotted in Fig. 4c. This surface is the contracted subspace H.

4.2. The low-dimensional model G : H! X : the ‘material’ plane

H represents the space of coefficients ða1; . . . ; aN Þ that map to microstructures that satisfy the statistical
properties P 1; . . . ; P n. The first-order constraints ensures that H is a truncated plane in N-dimensional space.
Since every point on this plane represents a unique microstructure, we call this plane the ‘material’ plane.

Since each of the microstructures in the ‘material’ plane satisfies all required statistical properties, they are
equally probable to occur in any random spatial point in the large scale structure. That is, every point in the
Fig. 4. Sequential contraction of R3 to H: (a) Enforcing the first-order statistics. (b) Enforcing the pixel bounds; and (c) : Enforcing one
second-order statistic.
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‘material’ plane is equiprobable. This observation provides a way to construct the stochastic model for the
allowable microstructures:

Define the function G : H! X such that IðxÞ ¼ lþ
PN

i¼1niU
ðiÞ, i ¼ 1; . . . ;N , where ni are independent

uniform random variables chosen from H. By the subspace contraction procedure developed above,
F : X!H was made bijective. G is just the inverse of F. This low-dimensional stochastic model G for
the microstructure is the stochastic input in the partial differential equation defining the problem. Techniques
to solve the problem are discussed in the next two sections.

Remark 7. We wish to emphasize the fact that the methodology outlined above is very general. Any other
technique for model reduction (instead of using principle component analysis) can also be used to obtain a
reduced image set. Other applicable techniques include independent component analysis, other transform
techniques like the cosine transform, the Haar transform as well as filtering techniques like Autoregressive
(AR), Moving-average (MA) and Auto Regressive Moving Average (ARMA) methods. Once the dataset has
been approximated as coefficients in N-dimensional space, the bounds on these coefficients can be computed
using the techniques outlined in this section.
5. Collocation techniques for solving stochastic partial differential equations

Recall that the governing equation for thermal diffusion is given by Eq. (2) From the developments of the
previous section, a(x) can now be represented as a function, F, which depends on the topology as:
aðxÞ ¼ aðn1; . . . ; nN Þ ¼ F lþ
XN

i¼1

niU
ðiÞ

 !
; i ¼ 1; . . . ;N : ð12Þ
The reduced N + d-dimensional equation for the temperature with N stochastic dimensions and d spatial
dimensions is given by Eq. (4) where C, the domain of the N-tuple n ¼ ðn1; . . . ; nN Þ is the subspace H.

Usually, for realistic problems, the number of stochastic dimensions is usually large (N > 8). As discussed in
Section 1, it is difficult to use the spectral Galerkin method in these cases, because of the coupled nature of the
resulting deterministic equations. We utilize an alternate collocation based strategy that results in a set of
decoupled deterministic equations [17]. In the collocation approach, a finite element approximation is used
for the spatial domain and while the multi-dimensional stochastic space is approximated using interpolating
functions. The interpolating functions are mutually orthogonal and the resulting equations are decoupled. In
this method, one computes the deterministic solution at various points in the stochastic space and then builds
an interpolated function that best approximates the required solution [17–19,22,23].

The collocation method collapses the N + d-dimensional problem to solving M (where, M is the number of
collocation points) deterministic problems in d dimensions. The statistics of the random solution can be
obtained through simple quadrature operations on the interpolation function u ¼

PM
k¼1uðx; nkÞLkðnÞ
huaðxÞi ¼
XM

k¼1

uaðx; nkÞ
Z

C
LkðnÞqðnÞdn; ð13Þ
where qðnÞ : C! R is the joint probability distribution function for the set of independent, uniformly distrib-
uted random variables n1; . . . ; nN .

There are two issues to be considered while constructing the interpolating function: Which set of nodes
HN ¼ fnn

i g
M
i¼1 is optimal, and once the set of points are decided how does one construct the multi-dimensional

interpolation function.
The choice of the optimal distribution of points is motivated using one-dimensional functions. Let

f : ½a; b� ! R be a function that has to be interpolated by a polynomial Imðf Þ using a finite number of nodes
a 6 x0 < x1. . . < xm 6 b. There exists a (unique) polynomial Imðf Þ satisfying Imðf ÞðxiÞ ¼ f ðxiÞ for
i ¼ 0; 1 . . . ;m. This can be written in the form:Imðf ÞðxÞ ¼

Pm
i¼0f ðxiÞLiðxÞ, where the basis polynomials are

given by LiðxÞ ¼
Qm

k¼0;k 6¼i
x�xk
xi�xk

. As the number of points m increases, the interpolation function Imðf Þ
represents the function f better. This is irrespective of how one chooses the nodes fxigm

i¼0. However, uniform
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convergence ðkf �Imðf Þk1 ! 0 as m!1) is guaranteed only for a particular distribution of points. This
optimal node distribution is derived form the theory of the best approximating polynomial and its Lebesgue
constant [26]. One such type of node distribution is the interpolation based at the Chebyshev extrema [25].

The error bound for the Chebyshev node based interpolation function of the function f 2 Ck is given by [26]
kf �IX ðf Þk1 6 Cn�k logðnÞ: ð14Þ

When one is dealing with multiple stochastic dimensions, it is straightforward to extend the interpolation func-
tions developed in one dimension to multiple dimensions as simple tensor products. If u(n) is a function that
has to be approximated in N dimensional space, and i = (m1,m2, . . .mN) are the number of nodes used in the
interpolation in N dimensions, the full-tensor product interpolation formula is given as
IN uðnÞ ¼ ðIi1 � . . .�IiN ÞðuÞðnÞ ¼
Xm1

j1¼1

. . .
XmN

jN¼1

uðni1
j1
; . . . ; niN

jN
Þ:ðLi1

j1
� . . .� LiN

jN
Þ; ð15Þ
where Iik are the interpolation functions in the ik direction and nik
jm

is the mth point in the kth coordinate.
Clearly, the above formula needs m1 · . . . · mN function evaluations, at points sampled on a regular grid.
In the simplest case of using only two points in each dimension, the total number of points required for a
full-tensor product interpolation is M = 2N. This number grows very quickly as the number of dimensions
is increased. Thus one has to look at intelligent ways of sampling points in the regular grid described by
the full-tensor product formula so as to reduce the number of function evaluations required.

The Smolyak algorithm provides a way to construct interpolation functions based on a minimal number of
points in multi-dimensional space. Using Smolyak’s method, univariate interpolation formulae are extended
to the multivariate case by using tensor products in a special way. This provides an interpolation strategy with
potentially orders of magnitude reduction in the number of support nodes required. The algorithm provides a
linear combination of tensor products chosen in such a way that the interpolation property is conserved for
higher dimensions.

5.1. Smolyak’s construction of sparse sets

Consider the one-dimensional interpolation formula
Umðf Þ ¼
Xm

j¼1

f ðY j
kÞa

j
k; ð16Þ
where Y i
k are the nodal sets and ai

k 2 C½a; b� are the interpolating functions. The Smolyak algorithm constructs
the sparse interpolant as [25,26]
Aq;N ðf Þ ¼
X

q�Nþ16jij6q

ð�1Þq�jij: N � 1

q��i

� �
:ðUi1 � . . .�UiN Þ; ð17Þ
with AN�1;N ¼ 0 and where i ¼ ði1; . . . ; iN Þ 2 NN and jij = i1 + . . . + iN. The structure of the points becomes
clearer when one considers the incremental interpolant, Di given by [25,26]
U0 ¼ 0; Di ¼ Ui �Ui�1: ð18Þ

The Smolyak interpolation Aq;d (the level q interpolant in d dimensions) is then given by
Aq;dðf Þ ¼
X
jij6q

ðDi1 � . . .� Did Þðf Þ ¼Aq�1;dðf Þ þ
X
jij¼q

ðDi1 � . . .� Did Þðf Þ: ð19Þ
To compute the interpolant Aq;dðf Þ from scratch, one needs to compute the function at the nodes covered by
the sparse grid Hq;N
Hq;N ¼
[

q�Nþ16jij6q

ðHi1
1 	 . . .	HiN

1 Þ: ð20Þ
But the construction of the algorithm allows one to utilize all the previous results generated to improve the
interpolation. Choosing the Chebyshev points as the support nodes in the one-dimensional case ensures that



the sets of points Hi are nested (Hi � Hi+1). To extend the interpolation from level i to i + 1, one has to eval-
uate the function at the grid points Hi

D ¼ Hi nHi�1. Thus, to go from an order q � 1 interpolation to an order
q interpolation, one only needs to evaluate the function at the differential nodes DHq;N given by
DHq;N ¼
[
jij¼q

ðHi1
D � . . .�HiN

D Þ: ð21Þ
As a matter of notation, the interpolation function used will be denoted AN+k,N, where k is called the level of
the Smolyak construction. The interpolation error using the piecewise multilinear basis is [25,26]
kf � Aq;N ðf Þk ¼ OðM�2jlog2M j3ðN�1ÞÞ; ð22Þ
where M ¼ dimðHðq;NÞÞ is the number of interpolation points.

5.2. Solution strategy

The final solution strategy is as follows: A stochastic collocation method in H 
 C � RN along with a finite
element discretization in the physical space D � Rd is used. Given a particular level of interpolation of the
Smolyak algorithm in N-dimensional random space, we define the set of collocation nodes HN ¼ fnkg

M
k¼1

on which the interpolation function is constructed. Given a piecewise FEM mesh X h
d 2 H 1

0ðDÞ, find, for
k = 1, . . . ,M,
uh
kðxÞ ¼ uhðx; nkÞ 2 X h

d ; ð23Þ
such that
BðuðniÞ : ni; x; tÞ ¼ 0; i ¼ 1; . . . ;M : ð24Þ
The final numerical solution takes the form
uhðx; nÞ ¼
XM

k¼1

uh
kðxÞL
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uðx; tÞ ¼ udðxÞ; x 2 oDD; ð28Þ
uðx; 0Þ ¼ 0; x 2 D: ð29Þ
Define the function space V0 such that
V 0 ¼ L2ðTÞ 	 H 1ðDÞ 
 v :

Z
T

Z
D
ðv2ðx; tÞ þ ðrvðx; tÞÞ2Þdxdt <1

� �
: ð30Þ
The function space for the solution U and the trial function space V is defined as
U ¼ u : u 2 V 0; u ¼ ud ; x 2 oDDf g; V ¼ v : v 2 V 0; v ¼ 0; x 2 oDDf g: ð31Þ

The variational form of Eq. (27) can be written as: find u 2 U such that for all v 2 V
ðu;t; vÞ þ ðaru;rvÞ ¼ ðf ; vÞ; ð32Þ

where ðu; vÞ 


R
D uvdx. We closely follow our earlier work [27] in deriving the variational multiscale

formulation.
In the variational multiscale approach, the exact solution u is assumed to be made up of contributions from

two different scales namely, the coarse scale solution uC that can be resolved using a coarse mesh and a subgrid
solution uF(u = uC + uF). This additive sum decomposition induces a similar decomposition for the function
spaces as U ¼ UC � UF and V ¼ V C � V F , respectively. The main idea is to develop models for characterizing
the effect of the subgrid solution uF on the coarse scale solution and to subsequently derive a modified coarse
scale formulation that only involves uC. The variational formulation given in Eq. (32) is split into two equa-
tions representing each of the scales:
ðuC
;t þ uF

;t ; v
CÞ þ ðaruC þ aruF ;rvCÞ ¼ ðf ; vCÞ; 8vC 2 V C; ð33Þ

ðuC
;t þ uF

;t ; v
F Þ þ ðaruC þ aruF ;rvF Þ ¼ ðf ; vF Þ; 8vF 2 V F : ð34Þ
Eq. (34) can be solved (usually by making some locality assumptions) to obtain an approximate model for the
subgrid solution uF. This model can then be used in Eq. (33) to eliminate uF and obtain a modified formulation
only in terms of uC.

Assume that the spatial domain is discretized using a coarse mesh into Nel disjoint sub-domains (also
referred to as coarse elements) denoted as D(e), where, (e) denotes the coarse element number. Further, let each
coarse element be discretized using a subgrid mesh into NelF

ðeÞ disjoint sub-domains (also referred to as subgrid
elements). The subgrid solution is assumed to be made up of two components ûF and uF0 such that
ðuC;t; v
F Þ þ ðûF ;t; v

F Þ þ ðaruC;rvF Þ þ ðarûF ;rvF Þ ¼ 0; ð35Þ
ðuF 0;t; v

F Þ þ ðaruF 0;rvF Þ ¼ ðf ; vF Þ: ð36Þ
The solution component ûF incorporates the entire coarse scale solution information and uF0 has no depen-
dence on the coarse scale solution. Further, the dynamics of uF0 is driven by the projection of the source term
onto the subgrid scale function space. This can be also understood as the sum of the homogeneous solution
with a particular solution. Following our earlier work [27], we refer to ûF as the coarse-to-subgrid (C2S) map
[27]. Owing to the affine nature of Eq. (36), uF0 is called the affine correction term [27]. This decomposition of
uF into ûF and uF0 has its roots in Green’s function theory and has been utilized in deriving VMS based mixed
variational formulations for deterministic elliptic [2] equations. Until now, Eqs. (35) and (36) are defined over
the entire domain and are exact. In order to localize the calculations of the subgrid solution, Eqs. (35) and (36)
can be localized to a coarse element D(e) with the only difference that the C2S map ûF , the affine correction uF0

and the trial function vF belong to a restriction (denoted as V ðeÞ0 ) of the function space V0 to the coarse element
with suitable boundary conditions (for example, the trial functions need to be zero on the coarse element
boundaries, whereas, the C2S map can be non-zero). The derivations below are performed for a single coarse
element D(e).

6.1. C2S map and multiscale basis functions

Let us assume that in a fully-resolved direct numerical simulation, the dynamics of the exact solution can be
captured using a fine time-step of dt. Since the length scales of interest in the coarse solution are far greater
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than that of the exact solution, we assume that the coarse time-step Dt is much larger in comparison to dt. Let
us consider a coarse time-step Dt ¼ ½tn; tnþ1�. Let t 0 be the local time coordinate defined such that at tn, t 0 = 0
and at tn+1, t 0 = Dt.

Let us also assume a piecewise polynomial finite element representation for the coarse solution inside a
coarse element D(e) ((e) is suppressed herein to simplify notation):
uCðx; tÞ ¼
XNbf

b¼1

uC
b ðt0ÞWbðxÞ; ð37Þ
where Nbf denotes the number of finite-element shape functions (piecewise polynomials) defined on the coarse
element. We seek a similar representation for the C2S map of the following functional form:
ûF ðx; tÞ ¼
XNbf

b¼1

uC
b ðt0Þ/

F
b ðx; t0Þ: ð38Þ
The fine scale variational formulation of Eq. (35) can be re-written after substitution of Eqs. (37) and (38) as
follows:
ðuC
b;tWb; vF Þ þ ðuC

b;t/
F
b þ uC

b /F
b;t; v

F Þ þ ðauC
br/F

b ;rvF Þ þ ðauC
brWb;rvF Þ ¼ 0; ð39Þ
where the repeated indices b indicates a summation over 1, . . .,Nbf (with similar notation applied to subse-
quent equations as well). The above equation can be further simplified as follows:
uC
b ðWb þ /F

b Þ
n o

;t
; vF

� �
þ ar uC

b ðWb þ /F
b Þ

n o
; rvF

� �
¼ 0: ð40Þ
Without loss of generality, we can assume the following representation for the coarse scale nodal solutions
uC

bsðtÞ inside the coarse time-step
uC
b ðt0Þ ¼ Aðt0Þ~uC

b þ Bðt0Þ�uC
b ; ð41Þ
where ~uC
bs and �uC

bs denote the nodal values of the coarse solution at the start and end of the coarse time step,
respectively. A(t 0) and B(t 0) are special positive functions that obey the following relations:
Aðt0Þ þ Bðt0Þ ¼ 1; Að0Þ ¼ 1; AðDtÞ ¼ 0; Bð0Þ ¼ 0; and BðDtÞ ¼ 1: ð42Þ

The representation given in Eq. (41) is quite general and incorporates several well-known time integration
rules. For example, A(t 0) = (Dt � t 0)/Dt and B(t 0) = t 0/Dt yields a backward-Euler time integration rule. From
Eqs. (38) and (41), we can write the C2S map as follows:
ûF
b ðx; tÞ ¼

XNbf

b¼1

~uC
b Aðt0Þ/F

b ðx; t0Þ þ �uC
b Bðt0Þ/F

b ðx; t0Þ
h i

: ð43Þ
We can now write Eq. (40) as
~uC
b Aðt0ÞðWb þ /F

b Þ
n o

;t; v
F

� �
þ ar Aðt0ÞðWb þ /F

b Þ
n o

;rvF
� �n o

þ �uC
b Bðt0ÞðWb þ /F

b Þ
n o

;t; v
F

� �
þ ar Bðt0ÞðWb þ /F

b Þ
n o

;rvF
� �n o

¼ 0: ð44Þ
Note that the above equation is fully-characterized based on the values taken by ~uC
bs and �uC

bs and the subgrid
basis function /F

bs.
We are looking to construct a localized scheme for representation of the subgrid solutions. Further, this

localized scheme should hold for all possible values of the coarse nodal coefficients ~uC
b and �uC

b . Hence, we
equate the terms in parentheses to zero to obtain the following set of variational formulations defined for each
index b, where, b = 1, . . .,Nbf.
Aðt0ÞðWb þ /F
b Þ

n o
;t; v

F
� �

þ ar Aðt0ÞðWb þ /F
b Þ

n o
;rvF

� �
¼ 0; ð45Þ
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Bðt0ÞðWb þ /F
b Þ

n o
;t; v

F
� �

þ ar Bðt0ÞðWb þ /F
b Þ

n o
;rvF

� �
¼ 0: ð46Þ
Now, by using the relations A(t 0) + B(t 0) = 1, we can simplify Eq. (46) as follows:
ðWbþ/F
b Þ;t;vF

� �
þ arðWbþ/F

b Þ;rvF
� �

� Aðt0ÞðWbþ/F
b Þ

n o
;t;v

F
� �

� ar Aðt0ÞðWbþ/F
b Þ

n o
;rvF

� �
¼ 0:

ð47Þ

By combining Eqs. (47) and (45), we obtain the evolution equation for /F

b

ðWb þ /F
b Þ;t; vF

� �
þ arðWb þ /F

b Þ;rvF
� �

¼ 0: ð48Þ
By assuming twice-differentiability of the subgrid basis functions, we can write the strong formulation for Eq.
(48) as: Find /F

b for x 2 D(e) and t 2 [tn, tn+1] such that
/F
b ;t �r � aðxÞr/F

b

� �
�r � aðxÞrWbðxÞ

� 	
¼ 0: ð49Þ
Solving the above equation for /F
b involves additional computation of the term a(x)$ Wb(x). To avoid that, we

introduce a new variable Ub
Ubðx; t0Þ ¼ WbðxÞ þ /F
b ðx; t0Þ; ð50Þ
that simplifies Eq. (49) to the following equation
Ub;t �r � ðaðxÞrUbÞ ¼ 0: ð51Þ

In order to complete the specification of this equation, we need to provide boundary conditions for Ub on the
coarse-element boundaries oD(e). We use ideas from the multiscale finite element method [6] that indicate that
the behavior of Ub on the boundaries of the coarse element should retain the characteristics of Eq. (51).
Dirichlet boundary conditions are applied on the boundaries of the coarse element. These boundary condi-
tions are obtained in a sequential manner: First, a one dimensional problems of the same form as Eq. (51)
is solved. The boundary conditions are set to the nodal values of the corresponding coarse scale basis func-
tions. This one dimensional equation is solved on all the edges of the coarse element. These solutions are then
used as boundary conditions for solving the two dimensional equation (of the same form as Eq. (51)) on all the
element faces. The solutions on the faces of the coarse element are subsequently used as the Dirichlet bound-
ary conditions for the solution of Ub (refer [6,27]).

The affine correction term uF0 as defined by Eq. (36) leads to the following strong form of equations inside
each coarse element sub-domain
uF 0;t þr � ðaruF 0Þ ¼ f ; x 2 DðeÞ: ð52Þ

We can now substitute Ub and uF0 in the coarse scale variational formulation given in Eq. (53) to obtain the
following: In each coarse element D(e),
ðuC
b ;tUb; vCÞ þ ðuC

b Ub;t; v
CÞ þ ðuC

b arUb;rvCÞ ¼ ðf ; vCÞ � ðaruF 0;rvCÞ � ðuF 0;t; v
CÞ: ð53Þ
Thus, the affine correction term figures in the modified coarse scale variational formulation as a sum of two
terms: an anti-diffusive term and a term involving its time derivative. Eq. (53) can be written as a matrix-vector
equation on each coarse element D(e)
½MðtÞ�fuC;tg þ ½KðtÞ�fuCg ¼ ff ðtÞg; ð54Þ
where, the dependence of [M(t)], [K(t)] and {f(t)} on time comes from the basis functions Ub and the time vary-
ing source term f(x,t), respectively as follows:
½M � ¼ Ubðx; t0Þ;WaðxÞ
� 	

;

½K� ¼ aðxÞrUbðx; t0Þ;rWaðxÞ
� 	

þ Ub;tðx; t0Þ;WaðxÞ
� 	

;

ff g ¼ f ðx; tÞ;WaðxÞð Þ � fuF 0ðx; t0Þg;t;WaðxÞ
� 	

� aðxÞruF 0ðx; t0Þ;rWaðxÞ
� 	

;

ð55Þ
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and {uC} represent the nodal values of the coarse solution in each coarse element. The deterministic VMS
problem in efficiently solved in a parallel C++ framework. Each processor computes the fine-scale basis func-
tions for a set of coarse elements and constructs a part of the global stiffness matrix and load vector.

Remark 8. In most practical problems of interest, the assumption of a quasi-static subgrid solution is made i.e.
in the governing equations for subgrid basis functions Ub, we assume that Ub,t = 0. This reduces the
computational cost since the subgrid basis functions can be computed once and for all at the start of the
computation (refer [27] for a detailed discussion). This approach is followed in the validation and all other
examples reported in the rest of the paper.
6.1.1. Reconstruction of the fine scale solution

Given the coarse scale solution {uC}, the subgrid basis functions /b and the affine correction uF0, the recon-
structed fine scale VMS solution is given by
u ¼
XNbf

b¼1

uC
b Ub þ uF 0ðxÞ: ð56Þ
6.1.2. Validation of the VMS code

In our previous work [27], Velamur Asokan and Zabaras had developed a stochastic variational multiscale
framework utilizing the generalized polynomial chaos expansion method. In the present work, we utilize a
deterministic variant of the method. For the sake of completeness, we include a comparison of the VMS
framework with fully-resolved FEM calculations. A two-phase microstructure containing 65 · 65 · 65 pixels
is considered (Fig. 5). The microstructure is a tungsten–silver composite (see Section 7). The volume fraction
of silver in this composite is 20%. The thermal diffusivity of silver is aAg = 1.7443 · 10�4 m2/s, while that of
Tungsten is aW = 6.953 · 10�5 m2/s. The diffusivity ratio of the composite is

aAg

aW
¼ 2:50. A simple thermal dif-

fusion problem under the imposition of Dirichlet conditions is considered. The steady-state temperature pro-
file, when a constant temperature of 0.5 is maintained on the left wall and a constant temperature of �0.5 is
maintained on the right wall, is evaluated. All the other walls are thermally insulated. In the fully-resolved
case, the computational domain of 65 · 65 · 65 is discretized using 262,114 uniform hexahedral elements. A
time step of dt = 1 · 10�2 s is used to solve the fully-resolved problem. The simulation was run for 2000 time
steps. The steady state temperature profile in this fully-resolved case is shown in Fig. 6a. This solution is
denoted as uFEM and is used in determining the error of the reconstructed VMS solution for different coarse
element sizes and varying time steps.
Fig. 5. Schematic of the computational system used for validation of the VMS method.



Fig. 6. Comparison of the VMS solution with the fully-resolved solution. (a) Fully-resolved simulation; (Number of elements = 262,114,
dt = 1 · 10�2) (b)–(e) Top row, Reconstructed VMS solution; Bottom row, corresponding coarse scale VMS solutions. Number of
elements used for these simulations (number within brackets is the subgrid discretization) : (b) 32,768 (8), (c) 4096 (64), (d) 512 (512), (e) 64
(4096). The coarse scale time step used in all cases: Dt = 1.0.
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A series of simulations were performed by increasing the size of the coarse element from a size of 2 · 2 · 2
to 32 · 32 · 32 pixels. The total number of elements in the computational domain decreased from 32,768 (for
the case when the coarse element is 2 · 2 · 2 pixels) to 8 (for the case when the coarse element is 32 · 32 · 32
pixels). For these problems. the corresponding subgrid discretization varied from 2 · 2 · 2 to 32 · 32 · 32,
respectively. The reconstructed solution from each coarse scale discretization is denoted by uVMS. Both the
coarse scale and the reconstructed VMS solutions are plotted in Fig. 6b–e. The error is defined as

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
Nnodes

PNnodes

i¼1 ðuFEM
i � uVMS

i Þ2
q

. Fig. 7 plots the error for increasing the size of the coarse scale element. Fur-

thermore, another series of simulations were performed by increasing the time step Dt of the VMS solution
procedure from the fully resolved transient time step of dt = 1 · 10�2 to a time step of Dt = 10. This set of
simulations was performed on a 32 · 32 · 32 discretization of the domain. The subgrid discretization for this
problem is 2 · 2 · 2. Fig. 8 plots the error for increasing the size of the time step Dt. A moderate coarse
Coarse element size

E
rr

or

10 20 30

10-4

10-3

10-2

10-1

100

Fig. 7. Error between reconstructed VMS solution and fully-resolved FEM simulation with increasing coarse element size.
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Fig. 8. Error between reconstructed VMS solution and fully-resolved FEM simulation with increasing coarse scale time step Dt.
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element size 8 · 8 · 8 and a moderate time step Dt = 1 result in large computational gains while still resolving
the effects of the fine scale.

6.1.3. Constructing the stochastic solution

A simple MATLAB [52] wrapper program was developed that first initializes the stochastic dimensions and
constructs the sparse grid coordinates. The corresponding transformed sparse grid coordinates in H are then
estimated. The deterministic VMS code is run for each collocation point and the appropriately named result
files are available. The wrapper program then reads the input data and constructs the interpolation function.
For the rapid construction of the interpolation functions, we utilize the efficient interpolation toolkit devel-
oped by A. Klimle: Sparse grid interpolation toolbox [53,54].

7. Numerical example

In the following section, an illustrative example showcasing the theoretical developments detailed above is
provided. We start from a given experimental image. The image (204 lm · 236 lm), shown in Fig. 9, is of a
Tungstan-Silver composite (from Umekawa et al. [55]). This composite was produced by infiltrating a porous
tungsten solid with molten silver. This is a well characterized system, which has been used to test various
reconstruction procedures [42,46].

The first step is to extract the necessary statistical information from the experimental image. The image
is cropped, deblurred and discretized. The volume fraction of silver is p = 0.2. The experimental two-point
Fig. 9. Experimental image of a two-phase composite (from [55]).
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Fig. 10. The two-point correlation function.
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correlation is extracted from the image. The normalized two-point correlation gðrÞ ¼ L2ðrÞ�p2

p�p2

� �
, is shown in

Fig. 10.
The next step is to utilize these extracted statistical relations (volume fraction and two-point correlation) to

reconstruct a class of 3D microstructures. We utilize a statistics based reconstruction procedure based on
Gaussian Random Fields (GRF). In this method, the 3D microstructure is obtained as the level cuts to a ran-
dom field. This random field satisfies a given field-field correlation. The statistics of the reconstructed 3D
image can be matched to the experimental image by suitably modifying the field-field correlation function
and the level cut values (see [42] for a detailed discussion). Following the work of Roberts and Garboczi
[42], the GRF is assumed to satisfy a specified field-field correlation given by:
cðrÞ ¼ e�r=b � ðrc=bÞe�r=rc

1� ðrc=bÞ
sinð2pr=dÞ

2pr=d
; ð57Þ
where the field is characterized by the correlation length b, a domain scale d and a cutoff scale rc. Optimal
values of (b,d, rc) are obtained by minimizing the error between the theoretical two-point correlation and
the experimental two-point correlation. The theoretical two-point correlation corresponding to
(b,d,rc) = (2.229,12.457,2.302) lm is plotted in Fig. 11.

Using the optimal parameters of the GRF (to match with the experimental data), realizations of 3D micro-
structure were computed. Each microstructure consisted of 129 · 129 · 129 pixels. This corresponds to a size
of 39.7 lm · 39.7 lm · 39.7 lm. One realization of the 3D microstructure reconstructed using the GRF is
shown in Fig. 12.

Model reduction based on principle component analysis was implemented using the eigs subroutine in Mat-
lab [52]. The implementation of the PCA ensured that these eigen-images are normalized. Principle component
analysis of the microstructure dataset revealed that the first 9 eigen-images could represent about 95% of the
eigen-spectrum (see Fig. 13). The stochastic dimension is set at N = 9.

Microstructures reconstructed using the eigen-images contain fractional values due to the removal of smal-
ler basis components. These fractional pixel values are rounded off to get the digitized microstructure [40,46].
The sequential contraction of RN to H was implemented as a set of Matlab routines. Enforcing the pixel
based bounds and the linear equality constraint (of volume fraction) was developed as a convex hull problem.
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Fig. 11. Comparison of the two-point correlation function from experiments and from the GRF.



Fig. 12. One instance (realization) of the two-phase microstructure.
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Fig. 13. Eigen-spectrum of the reconstructed microstructural images.
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A primal-dual polytope method was employed to construct the set of vertices. Enforcing the second-order con-
straints was performed through the quadratic programming tools in the optimization toolbox in Matlab. Two
separate cases are considered in this example. In the first case, only the first-order constraints (volume frac-
tion) are used to reconstruct the subspace H. In the second case, both first-order as well as second-order con-
straints (volume fraction and two-point correlation) are used to construct the subspace H.

The above procedure results in the function G. G is a 9-dimensional function that serves as the stochastic
input for the diffusion equation. A simple diffusion problem is considered. A computational domain of
128 · 128 · 128 is considered (this corresponds to a physical domain of 39.7 lm · 39.7 lm · 39.7 lm). The
random heterogeneous microstructure is constructed as a 129 · 129 · 129 pixel image. The steady-state tem-
perature profile, when a constant temperature of 0.5 is maintained on the left wall and a constant temperature
of �0.5 is maintained on the right wall, is evaluated. All the other walls are thermally insulated. The axis along
which the temperature boundary conditions are imposed is denoted as the x-axis (left-right) while the vertical
axis is the z-axis.

The construction of the stochastic solution is through sparse grid collocation strategies. A level 5 interpo-
lation scheme is used to compute the stochastic solution in 9 dimensions. The stochastic problem was reduced
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to the solution of 15713 deterministic decoupled equations. Forty nodes (each with two 3.8G CPUs) of our
64-node Linux cluster were utilized to solve these deterministic equations. These are dual core processors with
hyper-threading capabilities thus each node was used to perform the computation for 4 such problems. The
total computational time was about 56 h. Each deterministic problem involved the solution of a diffusion
problem on a given microstructure using an 8 · 8 · 8 coarse element grid (uniform hexahedral elements) with
each coarse element having 16 · 16 · 16 fine-scale elements. The solution of one deterministic VMS problem
took about 34 min. In comparison, one fully-resolved deterministic fine scale FEM solution took nearly 40 h
Fig. 14. Steady-state mean temperature (using first-order constraints): (a) temperature contour; (b)–(d) temperature iso-surfaces; (e)–(g)
temperature slices.
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Fig. 15. Reduction in the interpolation error with increasing number of samples (first-order constraint imposed).
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on a single processor. This clearly emphasizes the utility of the VMS procedure used here as a purely compu-
tational tool (resulting in two orders of reduction in computational effort).

The reduction in the interpolation error with increasing depth of interpolation is shown in Fig. 15. The
interpolation error is defined as the variation of the interpolated value of the function from the computed
value (e = max(jf � I(f)j)). As the level of interpolation increases, the number of sampling points used to con-
struct the stochastic solution increases (see [26] and [17] for explicit formulae relating the depth of interpola-
tion and the number of sampling points and further related discussions).

The mean temperature for the first case is shown in Fig. 14. The figure plots iso-surfaces of temperatures
�0.25 (Fig. 14b), 0.0 (Fig. 14c) and 0.25 (Fig. 14d). The figure also shows temperature slices at three different
locations of the xz plane: y = 0 (Fig. 14e), y = 20 lm (Fig. 14f) and y = 40 lm (Fig. 14g).

The standard deviation and other higher-order statistics of the temperature variation are shown in Fig. 16.
Fig. 16a plots standard deviation iso-surfaces. Figs. 16d–f plot slices of the temperature deviation at three dif-
ferent planes y = 0, y = 20 lm, y = 40 lm, respectively. The standard deviation reaches 8% of the maximum
temperature difference maintained. Two points, one from a region of high-standard deviation
(A = (22.15,20,0) lm) and another from a region of moderate-deviation (B = (11.69, 0,9.23) lm), are chosen
and the probability distribution functions of temperature at these points determined. Fig. 16b plots the PDF
for the point with large standard deviation. Notice that the range of the variability of temperature at this point
is rather high.

In the second case, the second-order constraints are also imposed along with the first-order constraints. g(r)
at 4 values of r (r = 5.897 lm, 6.208 lm, 6.518 lm, 7.139 lm) were enforced to contract the subspace H. A
level 5 interpolation scheme in 9 dimensions was used to sample the subspace. The stochastic problem again
reduced to the solution of 15,713 deterministic decoupled equations. The interpolation error in this case is
plotted in Fig. 17. The mean temperature for this case is shown in Fig. 18. The figure plots iso-surfaces of
temperatures �0.25 (Fig. 18b), 0.0 (Fig. 18c) and 0.25 (Fig. 18d). The figure also shows temperature slices
at three different locations of the xz plane: y = 0 (Fig. 18e), y = 20 lm (Fig. 18f) and y = 40 lm (Fig. 18g).
Fig. 16. Standard deviation of temperature (using first-order constraints): (a) standard deviation iso-surfaces; (b,c) temperature PDF at
two points. (d)–(f) Standard deviation slices.
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Fig. 17. Reduction in the interpolation error with increasing number of samples (first- and second-order constraints imposed).

Fig. 18. Steady state mean temperature (using second-order constraints): (a) temperature contour; (b)–(d) temperature iso-surfaces; (e)–(g)
temperature slices.
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It should be noted that enforcing the second-order constraints only marginally changes the mean temperature
profiles (compare the results in Figs. 14 and 18).

The standard deviation and other higher-order statistics of the temperature variation for the second case
are shown in Fig. 19. Fig. 19a plots standard deviation iso-surfaces. Notice the reduction in the scale of
the variation of the standard deviation. The iso-surfaces of higher variability occupy a much smaller volume
due to the enforcement of the second order statistics (compare Fig. 16a and Fig. 19a). Enforcing the second-
order constraints causes a large restriction of the allowable space of microstructures.



Fig. 19. Standard deviation of temperature (using second-order constraints): (a) standard deviation iso-surfaces; (b,c) temperature PDF at
two points. (d)–(f) Standard deviation slices.
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Fig. 19d–f plot slices of the temperature deviation at three different planes (y = 0 lm, y = 20 lm,
y = 40 lm). The probability distribution functions of temperature at the same points as used in the first-order
case are determined. Fig. 19b and c plot the PDF for these points. Notice the reduction in the range of var-
iability of the temperature due to the enforcement of the second-order statistics. This is clearly illustrated in
Fig. 20, where the PDFs of the two points are plotted for both the first- and second-order statistics. When only
first-order constraints are imposed, the range of variability of the temperature is [�0.5, 0.45], i.e. almost 98% of
the whole range of applied temperatures [�0.5, 0.5]. When second-order constraints are applied, this range is
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reduced to about 65% of the applied temperature range. By defining and enforcing higher order statistics at
different locations, the subspace H can be reduced further.

8. Conclusions

We described a novel framework for modeling diffusion in random two-phase media. A general methodol-
ogy was presented for constructing a reduced-order microstructure model for use as random input in the solu-
tion of stochastic partial differential equations governing physical processes (here diffusion) in such media. The
reduced-order model is built from reconstructed microstructure images. A sequential process that enforces
first, second- and higher-order statistics into the reduced-order model is provided. Two major problems affect-
ing analysis of heterogeneous random media are investigated. The problem of randomness of the microstruc-
ture is solved by reformulating the problem as a stochastic differential equation. The recently developed sparse
grid stochastic collocation method is used to solve the high-dimensional stochastic problem. The fine length
scale variation of the microstructure affects the thermal evolution in the microstructure. A computation tech-
nique (VMS) to incorporate the fine scale effects into the coarse scale solution is used. An illustrative example
is presented to demonstrate the ability of the methodology to compute at each point within the microstructure
the probability distribution of fields (e.g. temperature) as a result of microstructural (and corresponding prop-
erty) randomness. The effect of incorporating higher-order statistics is clearly seen.

We are currently investigating different aspects of the problems examined here, namely: using more sophis-
ticated model reduction techniques to build the reduced-order microstructure model, extending the method-
ology to arbitrary types of microstructures as well as developing models of advection-diffusion in random
heterogeneous media. In addition to the importance of such models in process modeling of heterogeneous
materials (polycrystals, composites, concrete, etc.), many other technological applications in modeling multi-
scale thermal/flow transport in geological media, soil contamination and reservoir engineering remain to be
explored.
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